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A linear stability analysis based on three-dimensional disturbances is implemented for the Taylor-
Dean flow, a viscous flow driven simultaneously by a rotating inner cylinder and an azimuthal pressure
gradient within an annulus with an arbitrary gap spacing. It is found that nonaxisymmetric instability
modes prevail for a wide variety of basic flows. The most stable state is always associated with the small-
est critical axial wavelength as well as with the onset of instability being largely confined to a small por-
tion within the gap. The flow reaches the most stable state either when the corresponding instability is
about to change from a nonaxisymmetric mode into an axisymmetric mode, as the pumping velocity is
increasing, or when a nonaxisymmetric mode changes both its azimuthal wavelength and its direction of
traveling. The nonaxisymmetric mode with smaller azimuthal wave number becomes increasingly
significant as the gap increases in width. From both the present calculated results and previous experi-
mental observations, it is inferred that nonlinear interactions between different instability modes may
occur when the basic flow is near the most stable state.

PACS number(s): 47.20.—k, 47.32.—y

I. INTRODUCTION

The Taylor-Dean problem is concerned with the stabil-
ity of a viscous flow between two concentric cylinders, in
which the basic flow (referred to as the Taylor-Dean flow)
is the combination of a circular Couette flow (Taylor
problem [1]) and an azimuthal Poiseuille flow (Dean
problem [2]). The stability of the Taylor-Dean flow is of
both academic and engineering application interest. In
engineering applications, the flow driven by both rotating
cylinders and an azimuthal pressure gradient can be
found in, for example, an electrogalvanizing line in the
steel-making industry, which uses a roller-type cell to
plate zinc onto the surface of a steel strip [3,4], and in a
rotating drum filter used in the paper and the board-
making industry, in which a sheet of fiber is taken off
from a drum rotating in a vat full of fiber suspensions [5].
Engineers in the paper industry had observed that longi-
tudinal streaks regularly spaced along the axis of the
drum arise in the formed sheet, an obvious result of the
secondary fluid motion predominating in the curved pas-
sage. In view of the fundamental interest in the flow pat-
tern formation and the transition sequence from steady
basic state to disorders, Mutabazi et al. [6,7] conducted a
series of experiments in a system consisting of two hor-
izontal coaxial rotating cylinders with a partially filled
gap. In such a system, they found some sort of traveling
waves prevailing in the supercritical regime. Chen et al.
[8] conducted both experimental and computational stud-
ies to investigate the radial distribution of azimuthal ve-
locity of basic flow within an exactly-half-filled gap.

The Taylor-Dean problem was first studied experimen-
tally by Brewster and Nissan [5] and both experimentally
and theoretically by Brewster, Grosberg, and Nissan [9].
The small-gap approximation was assumed in their
theoretical analyses. Later, the theoretical analysis was
extended by DiPrima [10], who used the Fourier expan-
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sion technique to study the problem with small-gap ap-
proximation in a larger range of 3 (a parameter that
characterizes the ratio of average pumping velocity to the
rotating velocity due to inner cylinder rotation), and by
Meister [11], as well as Sparrow and Lin [12], who em-
ployed a shooting technique to attack the problem of ar-
bitrary gap spacings. All these studies considered the on-
set of instability to be axisymmetric as well as stationary
and were restricted to the case of u=0, in which the
inner cylinder is rotating while the outer cylinder is fixed.
Note that u=9Q,/Q,, where 1, and (2, are angular veloc-
ities of inner and outer cylinders, respectively.

Of particular interest is the result obtained by DiPrima
[10] that the flow is most stable near = —3.5, at which
the critical wave number (a°) jumps discontinuously from
5.8 to 7.4 as 3 decreases. Kruzweg [13] showed analyti-
cally that the larger a° corresponds to the instability
occurring in the region near the inner cylinder and the
smaller a¢ is related to the instability confined to the re-
gion near the outer cylinder. Hughes and Reid [14]
found that the discontinuity of a corresponds to the fact
that the neutral curve consists of two separated branches.
They also pointed out that the jump of @ occurs precise-
ly at B*=—3.667. Raney and Chang [15] showed that
there exists an oscillatory axisymmetric mode of approxi-
mately equal stability with that of the steady mode in the
vicinity of *. They also indicated that, although the re-
sulting reduction of the value of the critical Taylor num-
ber T°¢ is not significant, the most critical mode is oscilla-
tory nonaxisymmetric with m=1 in
—3.850<B< —3.635, where m is the azimuthal wave
number. Later, the topology of neutral curves was exten-
sively studied by Kachoyan [16] for the axisymmetric
mode.

An azimuthally fully developed Taylor-Dean flow in an
annulus seems to be an artificial case since, under any cir-
cumstance, to provide an external pressure gradient in
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the azimuthal direction there must be an associated
breakdown of the symmetry of the geometry of the an-
nulus, which makes a fully developed basic flow impossi-
ble. Nevertheless, the Taylor-Dean flow may exist in a
portion of the annulus, such as the flow in eccentric ro-
tating cylinders [17] or the flow in a partially filled hor-
izontal annulus [8,18]. Mutabazi et al. [6,7] implemented
an experimental investigation for the Taylor-Dean flow in
the latter configuration, in which the flow consists of a
core region with a Taylor-Dean basic flow and two recir-
culation zones adjacent to free surfaces. Later, Mutabazi
et al. [19] analyzed the linear stability of the Taylor-
Dean flow of the core region. For the partially filled hor-
izontal annulus case, the average velocity due to the ro-
tating cylinders is equal to, but opposite in direction to,
the average velocity due to the pressure gradient caused
by the free surface within the gap; namely, f=—3. In
the analysis of Mutabazi et al. [19], the small-gap ap-
proximation was made and the cases for u =0 were con-
sidered. Their analysis resulted in a larger critical Taylor
number compared with the corresponding experimental
results [6]. They also found that the nonaxisymmetric in-
stability modes prevail in the range 0.29 =< <0.61. To
study the flow pattern formation as well as the transition
from the basic state to disorder, Mutabazi and co-
workers [6,7,20] conducted a series of experiments for a
variety of u in the same configuration. They indicated
that some sort of nonlinear interaction, such as spa-
tiotemporal pattern modulation, may exist in the Taylor-
Dean flow.

Recently, in a three-dimensional liner stability analysis
of the small-gap problem, Chen and Chang [21] showed
that nonaxisymmetric instability modes prevail in wide
ranges of both 3 and u. In particular, the peculiar neu-
tral curve of m =0 for B3*=—3.667 is found to be re-
placed by the neutral curve of m =5, which is unimodal
and the most unstable. Furthermore, they indicated, in
general, that the instability mode with a larger m is of
greater stability and smaller critical axial wavelength, the
most stable state occurring at a 8 on which the azimuthal
traveling wave changes its direction. In comparison with
the result of Mutabazi et al. [19] for the case of = —3,
Chen and Chang [21] ended up with that the nonaxisym-
metric mode instability predominates in the system in the
range u =0.35, which is much larger than that of Muta-
bazi et al. [19]. This discrepancy will be discussed in Sec.
IIIE.

In the present study, we extend the analysis of Chen
and Chang [21] by lifting the small-gap assumption. We
first compare the calculated results with those of previous
studies. A systematic parameter study covering wide
ranges of 7 and 3 is then conducted. To reduce the para-
metric space, only the case of u=0 will be considered.
The general stability characteristics and the nature of the
nonaxisymmetric modes, as well as the corresponding
traveling waves in the azimuthal direction, are discussed.
A comparison between present results and previous ex-
perimental and theoretical findings is also provided. A
general conclusion reached by the present study is that
the consideration of three-dimensional perturbations in a
stability analysis of Taylor-Dean flow is essential.

1037

II. PROBLEM FORMULATION AND METHOD
OF SOLUTION

We consider two infinitely long concentric circular
cylinders with the z axis as their common axis, and let R
and R, denote the radii of inner and outer cylinders, re-
spectively. The flow in the annulus is driven simultane-
ously by the rotating inner cylinder and by an azimuthal
pressure gradient. A cylindrical coordinate system is
chosen that is usually denoted by 7, 0, and z. If U,, Uy,
and U, are the velocity components in the increasing 7, 6,
and z directions, the Navier-Stokes equations admit a
steady solution in terms of velocities of three components

U=U,=0, U,=V(r). (1)

The basic-state velocity V(r), a combination of the fully
developed velocity distributions of circular Couette and
azimuthal Poiseuille flows, is described by

Viry=Ar+B/r+——22 G inr+Cr+E /), )
2pv a0

where p, v, and P are density, kinematic viscosity of the
fluid, and pressure of the basic flow, respectively. The
constants are

>

—m? —
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The 0P /30 in (2) accounts for the basic-state azimuthal
pressure gradient due to external pumping, and 7 is the
ratio of radii R;/R,. Note that the pressure may not be
single valued, i.e., P(0+2m)7#P(0), if free surfaces are
present.

To study the stability of this flow, we superimpose a
general disturbance on the basic solution

M=°P+p, (4)

>1ny .

u=(u,, Vir)tugu,),

where u,, uy, u,, and p are the three components of the
small-disturbance velocity and pressure, respectively. We
then substitute (4) into the equations of motion and the
continuity equation and neglect quadratic terms, and
yield

ou, u, 1 0uy Ou, —o s
or r r 06 3z )
du du 2Vu
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and
In these equations, the basic velocity, ¥V, as shown in (2),
D.= d + 1 . can be rewritten as
dr r
We then employ the normal-mode analysis for the small- Vix)=rQ, |g(x)+ Bh (:)A (x) , (18)
disturbance quantities
(u,,ug,u,)=8Q(u(r),v(r),w(r))exp[i(st +mo+Az)] in which
A B
9) (x)=—2-+ 2(x) (19)
g Q] er%sz g
and
and
p=pvQm(rlexpli(st +mO+Az)], (10) B )= 4(1—7) " 1
where A is the axial wave number and m is the azimuthal 4n*(Inn)*—(1—n?)? &(x)
wave number, which are, in general, real. For the sake of
finite resources of computing, we consider only the in- 5
teger values of m in this study. It turns out, as will be 2 A 2 _£x)
. : ) X {(1—=7")In +n°lny |1 .
seen in Sec. III, the growth rates of the instability appear &(x) 7°A?
to be fairly smooth functions of m and thus the instability
mode with noninteger values of m can be inferred by in- (20)

terpolation. The parameter s is, in general, complex and
8 :R 2 - R 1
We now introduce the dimensionless variables
r=R,+x8, A=8/R|, a=A8, o=s58/v,
k=(—Q,/44)"*m , T=—44Q,8"/v*.
After substituting (9) and (10) into (5)—-(8) and introduc-
ing

mx)=Diu(x)—X(x), Y(x)=D4v(x),

(12)
Z(x)=D'w(x),
where
'—_g_ ! :L =
D = x D% ™ +&(x), &(x) 1+ Ax (13)
we obtain
Diu(x)=—imé&(x)v(x)—iaw(x) , (14)
D'X(x)= io-i—iméz%-i-gz(x)mz—i—az u(x)
2
+2lim§2(x)—& v(x), (15)
rv
)
D'Y(x)= [’SS +im82%+2m2§2(x)+a2 b(x)
+ma&(x)w(x)—im&(x)X(x)
d> b
+ TD*V—sz_é,‘(x) u(x), (16)

The parameter 3, which in essence accounts for the ratio
of average pumping velocity to rotating velocity, is
defined as

6V,
ﬁ_ Q]Rl ’ (21)
where V,, is the average pumping velocity
1 f%2 1 oP
V,=-— ———(rl
m=aJr, 2 ae(r nr+Cr—+E /r)dr
—R 22 422 2
_ 2 9P (1—7°)*—47n“(Iny) 22)

2p0v 00 4(1—n)(1—n?)

By substituting (18) into (14)—(17) and making some rear-
rangement, one yields the final equations

D'X(x)=M(x)u(x)+2[im&(x)—VTK(x)v(x),

(23)
D'Y(x)=[M(x)+m*EX(x)Jv(x)+ma&(x)w(x)
—imé&(x)X(x)
VT By,
+[ " 1+ 12AAD*h(X)
—2im§2(x)]u(x) , (24)
D'Z(x)=[M(x)+a*lw(x)—iaX(x)
+[amv(x)—Z(x)]&(x) , (25)
where n=(— 4 /Q;)" "/ and
K(x)= g(xH_Bh(Jg; (x) ,
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and
M(x)=a*+m*Xx)+ilo+LimnVTK(x)] .

We rewrite (12) and (14) into the following

D'u(x)=—[imv(x)+u(x)])&(x)—iaw(x) , (26)
D'v(x)=Y(x)—&x)w(x), 27
D'w(x)=Z(x) . (28)
The relevant boundary conditions are
u(x)=v(x)=w(x)=0 at x=0,1. (29)

Note that (23)—(28) can be reduced into Eq. (21) of
Krueger, Gross, and DiPrima [22] for the wide-gap Tay-
lor problem if =0 is assumed. They can also become
the governing equations for either the wide-gap or the
small-gap Taylor-Dean problem for axisymmetric distur-
bance, as shown in, for example, Sparrow and Lin [12]
and DiPrima [10], respectively, if proper assumptions are
imposed.

The ordinary differential equations (ODE’s) (23)-(28)
with the boundary conditions (29) determine an eigenval-
ue problem of the form

F(n,u,B,m,a,0,T)=0 . (30)

The marginal state is characterized by o, the imaginary
part of o, equal to zero. For given values of 1, u, and 3,
we seek the minimum real positive T over real a >0 and
integer m =0, for which there is a solution for (30) with
o,;=0. The sought value of T is the critical Taylor num-
ber T for assigned values of 17, u, and 3. The values of a
and m corresponding to T°¢ determine the form of the
critical disturbance. Moreover, the real part of o, name-
ly o,, corresponding to T, determines the frequency of
the oscillation as well as the angular velocity of the trav-
eling wave. We solve the two-point eigenvalue problem
defined by (23)-(29) with a shooting technique together
with a unit-disturbance method. This method has been
used by, for example, DiPrima [23], Harris and Reid [24],
Sparrow, Munro, and Jonsson [25], and Krueger, Gross,
and DiPrima [22], for similar hydrodynamic stability
problems, and more recently, by Chen and Chang [21] for
the small-gap Taylor-Dean problem. For details of the
computational procedure, the reader is referred to
Krueger, Gross, and DiPrima [22].

TABLE I. Comparison between the results of the

Gross, and DiPrima [22] (B).
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Once the eigenvalues 7° and o, are obtained, the
eigenfunctions of u, v, and w, which during the integra-
tion are considered complex as u(r)=u,(r)+iu;(r),
v(r)=v,(r)+iv,(r), and w(r)=w,(r)+iw;(r), respective-
ly, can be determined by another direct integration. One
then substitutes the eigenfunction into the relation (9)
and takes the real part to yield the function of small-
disturbance velocity,

PY(r,0,z,t)=u,(r)cos(o,t +mO+2Az)

—u (r)sin(o,t+mb6+2Az) , (31)
&(r,0,z,t)=v,(r)cos(o,t +mO+Az)

—v;(r)sin(o,t+mbO+Az), (32)
x(r,0,z,t)=w,(r)cos(o,t +mO+Az)

—w;(r)sin(o,t+mO+2Az) . (33)

III. RESULTS AND DISCUSSION

In this study, we consider =0 where the inner
cylinder is rotating while the outer cylinder is stationary.
The analysis covers wide ranges of 77 and 5. We first, in
Sec. IIT A, check our computer code by considering the
special case B=0, which is equivalent to the Taylor prob-
lem as considered in Krueger, Gross, and DiPrima [22].
Then the significance of the gap width to the stability
characteristics of Taylor-Dean flow is examined in Sec.
IIIB by comparing the results of 7=0.95 to those of
m=~1 [21]. A discussion of the general stability charac-
teristics is provided in Sec. IIIC, in which a detailed
description of the prevalence of the nonaxisymmetric
modes and the corresponding stability features is provid-
ed. In Sec. III D, the nature of the neutral curves is illus-
trated, from which possible nonlinear interactions be-
tween different instability modes at the supercritical stage
are discussed. Finally, in Sec. IIIE, we compare the
present results with some of previous investigations.

A. The case of 8=0: The Taylor problem

For B=0, the azimuthal pressure gradient vanishes,
and the Taylor-Dean formulation is reduced to the Tay-
lor formulation. For the purpose of verification of our

present study for 3=0 ( 4) and those of Krueger,

a‘ TC —0
n u m A B A B A B
0.95 0.0 0 3.128 3.128 3509.7 3509.9 0 0
—0.8 3 3.56 3.561 13728 13730 15.1371 15.106
—1.0 4 3.68 3.680 20068 20072 23.3823 23.358
—1.5 6 4.00 4.002 45290 45307 43.6146 43.616
—2.0 7 4.49 4.483 91235 91298 64.2612 64.147
0.9 —1.0 3 3.72 3.721 23 855 23 861 26.8755 26.896
0.8 —1.0 2 3.84 3.835 36751 36767 32.9800 33.009
0.7 —1.0 2 3.99 3.984 60065 60099 48.5117 48.472
0.6 —1.0 2 4.46 4.456 113960 114043 72.8252 72.626
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numerical results, we recompute the cases considered in
Krueger, Gross, and DiPrima [22] by using our computer
code. One can see in Table I that the comparison results
in excellent agreement.

B. Significance of the gap width

In this section, we consider the case of 7=0.95, which
can be compared with the small-gap case [21] n=1. In
the case n~1 and B~fB*=—3.667, the neutral curve in
terms of T versus a consists of two separated curves for
the stationary axisymmetric mode [10,14] and one con-
necting curve lying between these two branches for the

oscillatory axisymmetric mode [15]. In considering the
instability against three-dimensional disturbances, Chen
and Chang [21] found that the most unstable mode for
B~ [B* is nonaxisymmetric with m =35, which is an insta-
bility mode with five waves traveling in the azimuthal
direction. For the wide-gap case with n=0.95 (Fig. 1),
we find that the neutral curves for the axisymmetric
mode are similar to those of the small-gap case, while the
most unstable mode is nonaxisymmetric with m =6.

In Table II, the comparison between the results of
7n=0.95 and np=1 in terms of T a° m, and o for
—10<5=10 is made. It is found, by and large, that the
flow of 7=0.95 is slightly more stable than that of n=1,

TABLE II. Comparison between results of the wide-gap problem of 7=0.95 ( 4) and those of the

small-gap problem of n~1 (B) [21].

m T°
B A B A B A B A B
10.0 0 0 3.49 3.46 481 454 0 0
5.0 0 0 3.25 3.24 1049 992 0 0
0.0 0 0 3.13 3.13 3510 3390 0 0
—1.0 0 0 3.24 3.23 5587 5417 0 0
—2.0 0 0 3.82 3.79 13016 12 540 0 0
—2.1 0 3.96 14 166 0
—2.15 1 4.10 15692 —6.6221
—2.2 2 1 4.15 4.14 16 663 16076 —13.7162 —5.5416
—2.3 2 4.22 4.24 18 575 18021 —21.7815 —12.0343
—2.4 3 4.28 19916 —18.7197
—3.0 4 4 4.76 4.72 34988 33910 —43.1750 —34.4285
—3.6 5 5.35 56765 —69.6927
—3.7 6 5 5.56 5.44 61013 59 347 —80.8636 —59.6907
—3.73 6 5 5.58 5.46 62303 60 667 —81.9674 —60.9290
—3.75 2 2 5.66 5.69 61508 60729 30.2877 33.3718
—3.9 1 2 5.59 5.61 51687 50990 14.9222 32.6147
—4.0 1 1 5.54 5.56 46276 45601 14.6621 16.1222
—4.1 0 0 5.49 5.52 41 606 40962 0 0
—5.0 0 0 5.17 5.18 18 870 18 449 0 0
—10.0 0 0 4.56 4.56 2078 2005 0 0
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while the critical axial wavelengths are virtually the
same. In addition, the frequency of the nonaxisymmetric
mode of 7=0.95 is significantly different from the corre-
sponding one of n=1. In order words, although the
small-gap approximation results in a small difference in
terms of T° and a‘ from 17=0.95, the frequency of the in-
stability mode is nevertheless significantly influenced by
this zero-curvature assumption.

C. General stability characteristics

We present in Figs. 2(a) and 2(b) the map on the -8
plane in which the instability modes ranging from m =0
to 5 and the contours of constant 7° and a° are illustrat-
ed. The - map covering 0.1=9=1and —5=<=0and
the resolutions of Ay and AB are up to 0.05 and 0.1, re-
spectively. Accordingly, there are a total of 969 cases of
different (,B) considered. The case (or point) corre-
sponding to a nonaxisymmetric mode is represented by a
particular mark (see the caption of the figure) and the
case of the axisymmetric mode is not marked. Note that
the results for =1 are those obtained by Chen and
Chang [21] for the small-gap problem.

From this map, it is found that nonaxisymmetric
modes predominate in the domain within —4 <8< —2.2
and 0.25 =<7 =1, beyond which the onset of instability is
stationary and axisymmetric. It is also found that azimu-
thal wave number m increases with both increasing 7 and
decreasing 8 when 3> —3.8. For < —3.8 (below the
dash line), the azimuthal wave number m is decreased to
either 1 or 2 and, meanwhile, the direction of the travel-
ing wave is opposite to that for > —3.8 (see also Table
II for =0.95 and n=1). In general, an increase in the
gap width results in a reduction of the azimuthal wave
number m; for n <0.8, most of the traveling waves are of
m <2, while for 7= 0.8, the m ranges from O to 5.

Regarding the stability criteria T° and a€, Fig. 2(a)
shows that the maximum T° occurs along either the
lower boundary dividing the nonaxisymmetric and ax-
isymmetric modes or the boundary separating the nonax-
isymmetric modes with the opposite traveling-wave direc-
tion. Along the same boundary, the a€ is the largest and
experiences a dramatic jump as 8 varies. In a physical
sense, the Taylor-Dean flow is in the most stable state ei-
ther when a nonaxisymmetric mode is switching into an
axisymmetric mode as 3 decreases or the nonaxisym-
metric mode is changing its traveling-wave direction with
different m.

In view of the influence of B and 7 on the stability
characteristics, we found that, generally, the flow in
larger gap width is of greater stability, and the most
stable state is associated with the smallest critical axial
wavelength; also, the value of a ¢ decreases gradually with
decreasing B in B> 0, experiences a dramatic change in a
small range of B (which depends on 7), and remains virtu-
ally constant for other B considered. More specifically,
for n=0.9, for instance, the T increases as 3 decreases
for = —3.9 and becomes a monotonically decreasing
function of B for < —3.9. In —3.9=B=< —2.2 (see dot-
ted line), the instability is nonasymmetric. A similar rela-
tion is found for 7=0.7 and 0.5, where the range of B8

corresponding to nonaxisymmetric modes lies in
—3.6=5B=<—2.2and —3.4=<B= —2.2, respectively.

To explain physically the occurrence of the sharp max-
imum of T for the small-gap case =1, Chandrasekhar
[26] argued that the value of 8 associated with maximum
T°€ should lie in the neighborhood of 8= —3, at which,
based on Rayleigh’s criterion [27], the layers of stable and
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FIG. 2. Map of nonaxisymmetric modes in 7-3 plane. ---:
boundary between the modes with opposite angular velocity.
O: m=1;@: m=2;0: m=3; X: m=4; B: m=5. (a) Con-
tours of T, AT“=20000; (b) contours of a€, Aa°=0.4.
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unstable fluid are of equal extent within the gap (see Fig.
94 on p. 356 of Chandrasekhar [26]). When applied to
the case of u0, however, Hughes and Reid [14] showed
that this argument becomes less compelling. Another
physical explanation was proposed by DiPrima [10], that
the most stable state occurs at B, (was —3.667 accord-
ing to his analysis for the axisymmetric mode) and is due
to the fact that, as long as the averaged velocities of
pumping and rotation are nearly equal but opposite in
sign (note that = —3 is the case in which the averaged
velocities of pumping and rotation are equal but opposite
in direction), they tend to nullify each other before insta-
bility thresholds and thus result in a relatively stable
state.

To gain physical insights into the maximum 7T for the
present problem, which differs from that of Chan-
drasekhar [26] by considering the viscosity of the fluid
and from that of DiPrima [10] by lifting the assumptions
of axisymmetric disturbance and small-gap approxima-
tion, we present the contours of the small-disturbance ve-
locity in Figs. 3 to 5 for various 17 and 8. For each plot of
contours, the abscissa accounts for the axial direction (z
direction) and the ordinate for the radial direction (7
direction); the width represents half the critical axial
wavelength of the perturbed flow and the height is the
gap between two cylinders. The contours of three veloci-
ty components ¥, ¢, and } can be directly calculated
from Eqgs. (32), (33), and (34), respectively, in which
t=0=0 is considered, and the perturbation value in each
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FIG. 3. Contours of ¢ of =0.9 for various . (a) =10,
m=0; (b) B=5, m=0; (c) B=0, m=0; (d) B=—1, m=0; (e)
pB=—2, m=0; (0 B=-2.2, m=1; (g B=—2.4, m=2; (h)

=—=2.6, m=3; (i) B=—3.2, m=3; () B=—3.4, m=4; (k)
B=—3.8, m=1; 1) B=—4, m=0; (m) B=—5, m=0; (n)
B=—10, m =0.
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FIG. 4. Contours of ¢ of n=0.5 for various 8. (a) B=10,
m=0; (b) B=5, m=0; (c) =0, m=0; d) B=—1, m=0; (e)
B=—2, m=0; (D B=—2.2, m=1; (g B=—2.8, m=1; (h)
B=—4,m=0; () B=—5, m =0; (j) B= — 10, m =0.
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FIG. 5. Contours of ¢ of =0.1 for various B. (a) B=10,
m =0; (b) B=5, m=0; (c) B=1, m=0; (d) B=—0.4, m=0; (e)

=—1, m=0; () B=—-2.2, m=0; (g B=—3, m=0; (h)
B=—4,m=0; (i) B=—5,m=0; (j) B=—10, m =0.
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case is normalized with respect to its corresponding max-
imum value (or minimum value if its value is negative).
Accordingly, the maximum of the disturbance function in
each plot is unity and the contour level is fixed at 0.2.

Note that only the contours of ¢ are present since, as
concluded from our vast data base, it can stand for the
distribution of the onset of instability within the gap. By
observing these contours and the associated 7 in Fig.
2(a), one can find that there exist three branches of stabil-
ity characteristics, in terms of the relation between T'°¢
and S as well as the onset flow patterns. The first branch
is in the range >0, where T¢ increases with decreasing
B and the onset of instability is confined to the region
close to the inner cylinder. The second branch lies within
Bmax <B <0, in which T also increases with decreasing 3
while the onset of instability occurs mostly in the region
near the outer cylinder. The third branch belongs to
B < Bnax» Where T° decreases with decreasing 3 and the
onset of instability is largely confined to a small region
near the inner cylinder.

More specifically, as far as the onset flow pattern is
concerned, the onset of instability is confined to the inner
part of the gap for > 0; for B,,, <B <0, the region ac-
commodating the onset of instability switches from the
inner part to the outer part of the gap; for B<f, .« the
onset of instability is largely confined to a small region
close to the inner cylinder. It is also found that as T° gets
closer to the maximum value, the portion accommodat-
ing the onset flow becomes smaller, leaving a large part of
the flow within the gap quiescent. That explains why the
flow under this condition is of greater stability. In fact,
near 3., both the stable and unstable regions are of ap-
proximately equal extent within the gap, which follows
the argument of Chandrasekhar [26]. For 3 < f,,,,, how-
ever, these two regions still share the gap spacing approx-
imately equally, but the basic state is not at all the most
stable.

D. Nature of the neutral curves
There are two kinds of neutral curve for the present

problem: one illustrates the variation of T versus a and
the other accounts for the relation between T and m.

(b)
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The neutral curve in the T-a plane for the most unstable
mode is mostly unimodal. As the change of instability
mode occurs, the neutral curve consists of two branches,
each of which accounts for a mode with different m, and
accordingly, the neutral curve is bimodal. The bimodal
instability apparently exists for the cases in which the
change of mode accompanies a finite jump of a. This is
evident by observing the neutral curves for y=0.7 (Fig.
6), for instance, where the most unstable mode switches
from m =2 to m =0 as 3 changes from —3.6 to —3.65.
In general, the bimodal stability becomes more significant
as 1) decreases.

With regard to the neutral curve in the T-m plane,
another interesting physical phenomenon is observed.
The neutral curves for =0.95 are presented in Fig. 7.
Each neutral curve accounts for the relation between
T°/T§ and m, where T§ is the critical Taylor number of
m =0. The points connected by a continuous curve are
associated with the same value of 3. From these neutral
curves, one may find that, except for the cases of B~ ..,
the T°° for the same 3 but different m are greatly different.
Physically, it means, for a case with 3 not lying in the
neighborhood of B,,,,, the most unstable mode is of rela-
tively smallest stability compared with the other modes
of different m. Nevertheless, as 3 lies in the neighbor-
hood of B,,,,, the T for the modes with different m are of
relatively smaller difference; moreover, we also note that
the eigenfunctions of small perturbation velocity for these
modes are similar, i.e., the threshold of the instability of
different m may occur in the same portion within the gap.

It is known that, if in a system there exist different
modes of instability with similar stability criteria, such as
T° and corresponding eigenfunctions, the interaction be-
tween these modes in the supercritical state (7> 7°) may
be conducive to the bifurcations, the nonlinear interac-
tions between the modes, and possible resonances of these
modes [28]. For the present problem, this possibility lies
in the neighborhood of ,,,,. This inference is supported
by the experimental observation of Mutabazi et al. [6,7].
Their experiments were conducted in a system consisting
of two horizontal coaxial cylinders with a partially filled
gap, corresponding to the case 7=0.9 and = —3, which
is close to B, ~ —3.7. They indicated that, in the su-
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85000 A4 Lo
T 80000 s
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FIG. 6. Neutral curves of different modes
for n=0.7 and various 8. —A—: m=0;
———-0-=— m=2. (a B=-—3.6; (b)
B=—3.627; (c) B=—3.65.
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FIG. 7. Neutral curves in (T°/T§)-m plane for various S as
7=0.95, where T4 is the T° for m =0.

percritical regime, the instability forms a pattern of trav-
eling waves, which are periodic in space and time. A
periodic modulation of the instability modes was also re-
ported.

E. Comparison with previous results

In spite of the qualitative agreement between the ex-
perimental observation of Mutabazi et al. [6,7] and the
inference made on the basis of present results, the quanti-
tative comparison near the onset of instability is not so
satisfactory. The quantitative comparison is made for the
case u=0. The values of 1 and B corresponding to the
system of Mutabazi et al. [6] are, respectively, 0.88 and
—3. The present definition of the Taylor number T is re-
lated to the T,, of Mutabazi et al. [6] by T ~2Tj as
n~1. According to this relation, the measured onset
Taylor number is T°~ 17 300, which is about half of the
calculated value T°=36407 of the present study. In ad-
dition, the measured frequency of Mutabazi et al. [6] is
o =20, compared with the calculated value o =47.0933.
However, when comparing our results with the experi-
mental results of Brewster and Nissan [5] (see Fig. 1 of
DiPrima [10]), it is found that the calculated results of
717=0.95 are in excellent agreement with those of Brew-
ster and Nissan [5].

The difference between the results of the present calcu-
lation and the experimental data of Mutabazi et al. [6] is
obviously due to the presence of the free surface within
the gap. In such a partially-filled-gap system, according
to both the measurement as well as the computation of
Chen et al. [8] and to the analytical solution of Nor-
mand, Mutabazi, and Wesfreid [18], the basic flow con-
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sists of a core region, within which the flow is the fully
developed Taylor-Dean flow described in Eq. (18), and
two recirculation zones near free surfaces. Accordingly,
the basic-state velocities of the present study and of the
experimental investigations are different by the presence
of free surfaces, which leads to quite distinct stability
characteristics of these two basic flows. A satisfactory
comparison may be obtained if the analysis is made based
on the basic-state velocity shown in Normand, Mutabazi,
and Wesfreid [18], in which the recirculation zones are
considered. This attribution of the inconsistency between
analytical and experimental results is supported by the
experimental observation of Mutabazi et al. [6] that the
threshold of instability occurs in the recirculation zone
first and then in the core region. This may shed some
light on the reason for the lower T° determined by their
experiments.

In another analytical study, Mutabazi et al. [19] imple-
mented a linear stability analysis for the case = —3 and
©=0 with small-gap approximation p=1. They found
that the nonaxisymmetric modes prevail in the range
0.29 =1 =0.61, which is quite different from the results
of Chen and Chang [21] that the nonaxisymmetric modes
predominate in the system when p <0.35. Particularly,
for =0, Mutabazi et al. [19] concluded that the most
stable mode is axisymmetric (m =0) and the T° and a°
are approximately 40 900 and 6.4, respectively. Although
the values of T° and a° of the mode m =0 are consistent
with previous results [10,14], Chen and Chang [21] never-
theless showed that for u=0 and 8= —3, the onset of
flow instability is nonaxisymmetric with m =4 and
T¢~33900 and a°=4.7, which is also confirmed by the
present study with n=0.95 (Table II). The reason for the
discrepancy between Mutabazi et al. [19] and Chen and
Chang [21], as well as the present study, is not yet clear.

IV. CONCLUDING REMARKS

We have implemented a three-dimensional linear sta-
bility analysis for the Taylor-Dean flow within an annulus
with arbitrary gap spacing. In the parametric study cov-
ering wide ranges of 7 and [3, two major parameters
determining the basic flow, several conclusions are
reached for the stability characteristics: (a) A three-
dimensional consideration for the stability analysis of the
Taylor-Dean flow is essential since, for a wide variety of
basic states, the nonaxisymmetric instability prevails. (b)
Nonaxisymmetric modes predominate in the system
when 0.25=<7 =<1 and —4=<B= —2.2, in which the az-
imuthal wave number varies m from O to 5. (c) The most
stable state occurs in two situations: one when a nonax-
isymmetric mode is preparing to switch into an axisym-
metric mode as 3 decreases, the other when a nonaxisym-
metric mode changes both its traveling-wave direction as
well as its azimuthal wavelength as 8 varies. (d) A most
stable state is always associated with the smallest critical
axial wavelength, where the onset of instability is largely
confined to a small portion of the gap. (e) The azimuthal
wave number m decreases as 7) increases. It means that a
larger gap width accommodates a nonaxisymmetric mode
of larger azimuthal wavelength. (f) Due to the similarity
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in terms of T° and associated eigenfunctions holding for
different instability modes when B~f,,, some sort of
nonlinear interaction between these modes in a supercriti-
cal regime may occur in the Taylor-Dean flow, as ob-
served in the experiments of Mutabazi et al. [6,7].
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